| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 | /** * Contains methods for transforming point on sphere to * Cartesian coordinates using various projections. * @class */jvm.Proj = {  degRad: 180 / Math.PI,  radDeg: Math.PI / 180,  radius: 6381372,  sgn: function(n){    if (n > 0) {      return 1;    } else if (n < 0) {      return -1;    } else {      return n;    }  },  /**   * Converts point on sphere to the Cartesian coordinates using Miller projection   * @param {Number} lat Latitude in degrees   * @param {Number} lng Longitude in degrees   * @param {Number} c Central meridian in degrees   */  mill: function(lat, lng, c){    return {      x: this.radius * (lng - c) * this.radDeg,      y: - this.radius * Math.log(Math.tan((45 + 0.4 * lat) * this.radDeg)) / 0.8    };  },  /**   * Inverse function of mill()   * Converts Cartesian coordinates to point on sphere using Miller projection   * @param {Number} x X of point in Cartesian system as integer   * @param {Number} y Y of point in Cartesian system as integer   * @param {Number} c Central meridian in degrees   */  mill_inv: function(x, y, c){    return {      lat: (2.5 * Math.atan(Math.exp(0.8 * y / this.radius)) - 5 * Math.PI / 8) * this.degRad,      lng: (c * this.radDeg + x / this.radius) * this.degRad    };  },  /**   * Converts point on sphere to the Cartesian coordinates using Mercator projection   * @param {Number} lat Latitude in degrees   * @param {Number} lng Longitude in degrees   * @param {Number} c Central meridian in degrees   */  merc: function(lat, lng, c){    return {      x: this.radius * (lng - c) * this.radDeg,      y: - this.radius * Math.log(Math.tan(Math.PI / 4 + lat * Math.PI / 360))    };  },  /**   * Inverse function of merc()   * Converts Cartesian coordinates to point on sphere using Mercator projection   * @param {Number} x X of point in Cartesian system as integer   * @param {Number} y Y of point in Cartesian system as integer   * @param {Number} c Central meridian in degrees   */  merc_inv: function(x, y, c){    return {      lat: (2 * Math.atan(Math.exp(y / this.radius)) - Math.PI / 2) * this.degRad,      lng: (c * this.radDeg + x / this.radius) * this.degRad    };  },  /**   * Converts point on sphere to the Cartesian coordinates using Albers Equal-Area Conic   * projection   * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>   * @param {Number} lat Latitude in degrees   * @param {Number} lng Longitude in degrees   * @param {Number} c Central meridian in degrees   */  aea: function(lat, lng, c){    var fi0 = 0,        lambda0 = c * this.radDeg,        fi1 = 29.5 * this.radDeg,        fi2 = 45.5 * this.radDeg,        fi = lat * this.radDeg,        lambda = lng * this.radDeg,        n = (Math.sin(fi1)+Math.sin(fi2)) / 2,        C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),        theta = n*(lambda-lambda0),        ro = Math.sqrt(C-2*n*Math.sin(fi))/n,        ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n;    return {      x: ro * Math.sin(theta) * this.radius,      y: - (ro0 - ro * Math.cos(theta)) * this.radius    };  },  /**   * Converts Cartesian coordinates to the point on sphere using Albers Equal-Area Conic   * projection   * @see <a href="http://mathworld.wolfram.com/AlbersEqual-AreaConicProjection.html">Albers Equal-Area Conic projection</a>   * @param {Number} x X of point in Cartesian system as integer   * @param {Number} y Y of point in Cartesian system as integer   * @param {Number} c Central meridian in degrees   */  aea_inv: function(xCoord, yCoord, c){    var x = xCoord / this.radius,        y = yCoord / this.radius,        fi0 = 0,        lambda0 = c * this.radDeg,        fi1 = 29.5 * this.radDeg,        fi2 = 45.5 * this.radDeg,        n = (Math.sin(fi1)+Math.sin(fi2)) / 2,        C = Math.cos(fi1)*Math.cos(fi1)+2*n*Math.sin(fi1),        ro0 = Math.sqrt(C-2*n*Math.sin(fi0))/n,        ro = Math.sqrt(x*x+(ro0-y)*(ro0-y)),        theta = Math.atan( x / (ro0 - y) );    return {      lat: (Math.asin((C - ro * ro * n * n) / (2 * n))) * this.degRad,      lng: (lambda0 + theta / n) * this.degRad    };  },  /**   * Converts point on sphere to the Cartesian coordinates using Lambert conformal   * conic projection   * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>   * @param {Number} lat Latitude in degrees   * @param {Number} lng Longitude in degrees   * @param {Number} c Central meridian in degrees   */  lcc: function(lat, lng, c){    var fi0 = 0,        lambda0 = c * this.radDeg,        lambda = lng * this.radDeg,        fi1 = 33 * this.radDeg,        fi2 = 45 * this.radDeg,        fi = lat * this.radDeg,        n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),        F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,        ro = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi / 2 ), n ),        ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n );    return {      x: ro * Math.sin( n * (lambda - lambda0) ) * this.radius,      y: - (ro0 - ro * Math.cos( n * (lambda - lambda0) ) ) * this.radius    };  },  /**   * Converts Cartesian coordinates to the point on sphere using Lambert conformal conic   * projection   * @see <a href="http://mathworld.wolfram.com/LambertConformalConicProjection.html">Lambert Conformal Conic Projection</a>   * @param {Number} x X of point in Cartesian system as integer   * @param {Number} y Y of point in Cartesian system as integer   * @param {Number} c Central meridian in degrees   */  lcc_inv: function(xCoord, yCoord, c){    var x = xCoord / this.radius,        y = yCoord / this.radius,        fi0 = 0,        lambda0 = c * this.radDeg,        fi1 = 33 * this.radDeg,        fi2 = 45 * this.radDeg,        n = Math.log( Math.cos(fi1) * (1 / Math.cos(fi2)) ) / Math.log( Math.tan( Math.PI / 4 + fi2 / 2) * (1 / Math.tan( Math.PI / 4 + fi1 / 2) ) ),        F = ( Math.cos(fi1) * Math.pow( Math.tan( Math.PI / 4 + fi1 / 2 ), n ) ) / n,        ro0 = F * Math.pow( 1 / Math.tan( Math.PI / 4 + fi0 / 2 ), n ),        ro = this.sgn(n) * Math.sqrt(x*x+(ro0-y)*(ro0-y)),        theta = Math.atan( x / (ro0 - y) );    return {      lat: (2 * Math.atan(Math.pow(F/ro, 1/n)) - Math.PI / 2) * this.degRad,      lng: (lambda0 + theta / n) * this.degRad    };  }};
 |